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Thi paper define the generalized wavelet Fisher information of parameter g. This information measure is obtained by generalizing
the time-domain defin tion of Fisher’s information of Furuichi to the wavelet domain and allows to quantify smoothness and
correlation, among other signals characteristics. Closed-form expressions of generalized wavelet Fisher information for 1/f*
signals are determined and a detailed discussion of their properties, characteristics and their relationship with wavelet g-Fisher
information are given. Information planes of 1/ f signals Fisher information are obtained and, based on these, potential applications
are highlighted. Finally, generalized wavelet Fisher information is applied to the problem of detecting and locating weak structural
breaks in stationary 1/ f signals, particularly for fractional Gaussian noise series. It is shown that by using a joint Fisher/F-Statistic
procedure, signific nt improvements in time and accuracy are achieved in comparison with the sole application of the F-statistic.

1. Introduction

1/ f* signals are used as models of several phenomena in a
diversity of fields of science. From physics [1] to computer
networking [2] and even in psychology [3], 1/ f* processes
govern the observed characteristics of the phenomena within
these fields. The parameter «, which appears in several equa-
tions defini g these processes, plays an important role since
the behaviour and characteristics of the signals is dependent
upon the values of «. Consequently, the estimation of « is
of importance since the estimated « not only describes the
phenomena, but also allows to propose actions in accordance
with the relation of «a and the process it describes. For
instance, in computer networking, a value of « > 0 gives
rise to increased delays and packet losses in the network. In
response, network analysts may increase network resources
or modify network node algorithmics with the purpose of
reducing the observed delays and losses and enhance network
performance. This type of problem is also observed in other

field and, as a consequence, the effici t and robust estima-
tion of « plays a role of major importance [4, 5]. In the litera-
ture, several methodologies have been proposed for estimat-
ing a but it is recognized that no technique can provide robust
and effici t estimates for the variety of conditions observed
in measured data [5]. Modern techniques, which may consist
of combinations of single techniques, attempt to estimate «
under these conditions; however, they have shown limited
performance. Current techniques utilizing signal processing
techniques [5] and information theory approaches offer
new possibilities of obtaining robust and effici t estimates.
Information theory techniques have indeed been used to
study the nature, structure, and complexity of many physical
phenomena [6-9]. Fisher information, for instance, was used
in [10] to study electroencephalogram (EEG) signals and later
in [11 for characterizing nonlinear systems. Moreover, Fisher
information in wavelet domain was used in [12] to detect
weak structural breaks in 1/ f* signals. Tsallis entropies, on
the other hand, have been used for studying a variety of signal



characteristics [13] and its wavelet counterparts are currently
being used from structural damage identific tion in [14],
signal classific tionin [15], and for detecting structural breaks
in the mean in pure-power law (PPL) signals [16] among
others [17 18]. In general, with the use of wavelet based
information tools, signific nt improvements can be achieved
in the overall analysis and estimation of 1/f® signals. Thi

paper extends the generalized Fisher information proposed
by Furuichiin [19 20] to the wavelet domain and then obtains
a closed-form expression of this quantifie for 1/f signals.
Th relationship between generalized wavelet Fisher’s infor-
mation and wavelet g-Fisher information is discussed in
detail since both quantifiers measure similar characteristics
and are dependent upon g. Furthermore, the construction
of information planes for 1/ f* signals Fisher information
allows to identify analysis/estimation applications. Finally,
the application of this technique to the problem of detecting
and locating structural breaks within 1/f* signals is given
along with statistical analyses of their results. Since the family
of 1/ f signals is of importance in physics, biology, physiology,
medicine, and so forth, the results presented in this paper
are relevant for enhancing the analyses and estimation pro-
cedures within these fields Th rest of the paper is structured
as follows. In Section 2, a brief review of the properties,
defin tions, types, and open issues regarding 1/ f* signals is
provided. Also, some important results of the wavelet analysis
of these signals are also briefl outlined. Section 3, define

the generalized wavelet Fisher’s information concept, derives
a closed-form expression of this quantifie for the family of
1/ f* signals, and studies the behaviour of the information
planes of 1/f* signals’s Fisher information. A comparison
with the wavelet g-Fisher information is discussed in detail in
this section. Section 4 highlights the potential applications of
generalized wavelet Fisher’s information for the class of 1/ f*
signals and proposes a technique to detect and locate struc-
tural breaks in the mean within these processes. Section 5
presents the results of the level-shift detection capabilities
of generalized wavelet Fisher’s information on synthesized
fractional Gaussian noise (fGn) signals and fin lly; Section 6
draws the conclusions of the paper.

2. Signals with 1/ f* Behaviour

1/ f“ signals are ubiquitous in science and engineering and
model phenomena as diverse as DNA sequences [21, 22],
heart-beat time series [23, 24], mood [25], self-steem [26],
and so forth. An important feature of 1/f signals is their
power-law behaviour of their power spectral density (PSD);
that is, as,

S~ felfote) (1

where ¢, is a constant, « € R is the scaling parameter,
and f,, f, represent the power-law scaling interval [27].
Depending upon «, f,, f;,, several well-known processes are
obtained; for example, when f, > f, — 0and 0 < & < 1,
long-memory signals are obtained. Moreover, 1/ f signals are
self-similar in the sense that their distributional properties
are invariant under dilations in time and space. 1/ f signals
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may be regarded as stationary if « < 1 and nonstationary
if « > 1 [4, 28]. Th well-known fractional Brownian
motion (fBm), a Gaussian nonstationary self-similar signal
with parameter H whose autocovariance given by

2

EBy; (t) By (s) = % {|t|2H + |s|2H —t- 5|2H} (2)

with H € (0, 1), has a spectral density given by

S (f) ~c|f, f—0, (3)

and thus it can be regarded as a 1/ f signal with parameter
o« = 2H + 1. Fractional Gaussian noise (fGn), the first differ-
ence of fBm is a stationary Gaussian self-similar signal with
PSD given by [27]

(o)
. 1
Sen = 40%¢sin” (nf) Y ———mrs
j=eo | + ]
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<3 @

and H € (0,1). As f — 0, Siqp ~ clflszJrl and therefore is
a1/ f signal. Many other 1/ f* signals exist and the interested
reader is referred to [4, 27, 28] for further information.

2.1. Wavelet Representations of 1/ f* Signals. Wavelets and
wavelet transforms have been extensively used for the analysis
and estimation of 1/f signals [8, 9, 29-31]. In this paper,
the wavelet spectrum [31] of 1/ f signals is of interest since
it allows constructing distributions from which information
measures can be computed. For 1/f signals, the wavelet
spectrum is computed as

Ed> (j,k) = J: Sx (277 1) ¥ () dfs (5)

where ¥Y(f) = Il//(t)esznf 'dt is the Fourier integral of the
mother wavelet y,(¢), Sx(-) is the PSD of the process X, E is
the expectation operator, and d (7, k) is the discrete wavelet
transform of the process X, at time k and wavelet scale j
[29-31]. Using the well-known PSD of 1/ f* signals, (5) now
becomes

Ed? (j, k) = C27%, (6)

where C is a constant. For a more detailed discussion of the
wavelet analysis and synthesis of scaling signals, please refer
to [27-31).

3. Generalized Wavelet Fisher’s
Information Measure

Th fi stuses of Fisher information were in the context of sta-
tistical estimation [32, 33]. Recently, however, Fisher informa-
tion has been used to characterize nonstationarity in complex
processes such as EEGs and other nonlinear signals [10, 11.
Fisher information quantifie the spreading of a probability
distribution in the sense that is high for flat densities and
low for narrow ones. Fisher information is also sensitive to
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local discontinuities in the density as reported in [34]. Fur-
thermore, Fisher’s information also measures the oscillatory
degree of a function and their smoothness character. In this
context, Fisher’s information is large for smooth signals and
small for highly oscillatory ones. In the same way Tsallis
g-entropies generalize Shannon entropy, generalizations of
Fisher information have been proposed in the literature.
Plastino and coworkers defin d the g-Fisher information in
[6]; later, this measure was extended to the wavelet domain
in [7]. Lutwak et al. defin d the (p,A) Fisher information
in [35, 36] and later Furuichi defin d the generalized Fisher
information in [19, 20]. Th wavelet domain generalization of
Plastino’s (wavelet g-Fisher information) was used to detect
and locate weak structural breaks in 1/f signals using a
joint wavelet and Bai & Perron technique [7]. Signific nt
improvements were found specific lly for long time series
with LRD. Thi paper presents a wavelet-domain extension
to the time-domain generalization of Fisher’s information
of Furuichi [19]. To study in more detail the properties of
generalized Fisher’s information for 1/f signals, a closed-
form expression is first obtained. In addition, an in-depth
discussion of their relationship with the wavelet g-Fisher
information is given. The generalized Fisher information of
a probability density f(x) is computed as [19, 20]

I, (x) =E, {s, (X}, )

where E_ is the g-expectation operator defin dasE [g(X)] =

J_:f f(x)Tg(x)dx and s,(x) is the g-score function which is
defin d as the derivative of the g-logarithm of a density; that
is, as

din_ f (x)
Sq (x) = ZL) (8)
x
where lnq(x) = (x' - D/ - q) is the g-logarithm
function. For discrete distributions, p;, the generalized Fisher
information is computed using a discrete-time version of (7),
which is given by

Fq= ; {p;q' {lnq (pj+1) —In, (Pj)}z}’ 9)

for some q € Rand }; p; = 1. When p; is substituted by the
relative wavelet energy (RWE), (9) results in the generalized
wavelet Fisher information of parameter g which mea-
sures the spreading of a distribution, the oscillatory nature
of signals, among others. Unlike standard wavelet Fisher
information measure, generalized wavelet Fisher information
provides increased flexibility (with g) and the possibility to
adapt the analyses to the characteristics of the data under
study.

3.1. Generalized Wavelet Fishers Information of 1/ f Signals.
Generalized wavelet Fisher’s information is obtained by
substituting the RWE in (9). Recall that the RWE of 1/f“
signals is obtained by means of the wavelet spectrum or
wavelet variance of these signals. For stationary 1/ f signals,
the wavelet spectrum is [Edi(j, k) ~ 2j“C(1//, «), where

C(y, «) is a constant depending on the mother wavelet and
. The RWE of 1/ f“ signals is thus given by [7-9, 15 16],

(04
RWE, = pti-he 172 (10)

] l_ztxM’

where M and j represent the (logarithmic) length of the sig-
nal and the wavelet scale, respectively. The generalized wave-
let Fisher information of parameter q is, thus,

~ ztx(lfq) -1 2 1- 206 2-q 1- za(Z*q)(Mfl)
74 = 1-g 1—20M 1 —242-9)

_oa 129 _ Ha(2—q)(M-1)
=(1nq{2a})2{1 2 } {1 2 }
1 — paM 1-— 206(2—11)

(11)

Equations (11)are employed for the construction of infor-
mation planes which permit to study in more detail the
characteristics and behaviour of Fisher information for 1/ f
signals. Figure 1displays 1/ f signals Fisher information for
a € (-2,4), M € (8,16), and negative q. It is interesting
to note that under these conditions, the Fisher information
planes display two diff rent states. First state corresponds
to Fisher information values of zero (—co < « < «)
and the second to nonzero exponentially increasing Fisher
information values (@« > ;). The exponential increase of
Fisher information starts in ¢; and it is entirely controlled
by g. Observe that by setting «; = 1, the two states lie in
the intervals (-0, 1) and (1, co) and a maping of zero Fisher
information values to stationary signals and of nonzero
values to nonstationary signals is made. In the same way, by
setting o; = 3, a maping of zero Fisher values to nonsta-
tionary fBms is made and a maping of nonzero exponentially
increasing Fisher values to extended fBms is performed. The
case o = 1 allows to distinguish among the stationary and
nonstationary families of 1/ f signals while the case oy = 3
permits distinguishing among nonstationary ones. Parameter
q controls the boundary «;; decreasing g further shifts the
value of «; to the right. Figure 2 displays 1/ f signals Fisher
information for g > 0. As in Figure 1, the planes of Figure 2
were obtained for M € (8,16) and « € (-2,4). For
the particular case g € (0, 1), the Fisher information are
exponentially decreasing in the interval « € (—00,0) and
converging to zero for & > 0. As g increases, the information
planes converge to zero more quickly. Notice that, for g > 1,
a two-state behaviour is observed as well. In contrast to the
q < 0 case, the g > 1 displays an exponentially decreasing
behaviour for the first state and zero values for the second
one. Similar applications as those for negative g can also
be attached to the g > 1 case. Generalized wavelet Fisher
information therefore allows characterizing the complexities
of 1/f% signals. Fisher information for g < 0 (@ > 1)
are zero (exponentially decreasing) for random 1/ f signals
and exponentially increasing (converging to zero) for smooth
correlated signals. Th length of the intervals on which the
Fisher information is zero (exponentially decreasing) and
exponentially increasing (converging to zero) is controlled
by the value of parameter q. Because of the similarities in
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Figur e 1:Generalized wavelet Fisher’s information for 1/ f* signals. Top left with g = —0.8, top right with g = —1.2, bottom plot with g = -1.6,

and bottom right with parameter g = -2.2.

the information planes with those of the wavelet g-Fisher
information, an interesting question is how generalized wave-
let Fisher information is related with wavelet g-Fisher infor-
mation. In the following, we elaborate further on this ques-
tion and discuss the similarities and/or differences between
both information measures in more detail.

3.2. Relation with Wavelet q-Fisher Information. Thi section
explores the relationship that exists between generalized
wavelet Fisher’s information and wavelet g-Fisher informa-
tion. In principle, both quantifier can be used to measure
smoothness, complexity, and correlation within a signal or
system [7]. For ¢ — 1, it is straightforward to derive that
generalized wavelet Fisher information is given by the rela-
tion

(12)

e el
;

1-22M

On the other hand, wavelet g-Fisher’s information (for g —
1) is given by the following equation [7, 12]:

1— ztx(M—l) }

1-2°M (1)

F=02"-1) {
Observe the similarity that exists between (12) and (13)
Notice that both equations differ only in the term that multi-
plies expression (1 —2¢M=Dy /(1 -2%M) "The exact relationship

between these two quantifie s is obtained by observing the
fact that, for « € R and 2% > 0,
In(2*) < (2" -1). (14)

On the other hand, for & < 0, In(2%) is negative, which gives
rise to

In(2%) > (2% - 1)*. (15)
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Figur e 2: Generalized wavelet Fisher’s information for 1/ f* signals. Top left with g = 0.1, top right with g = 0.5, bottom plot with g = 0.99,

and bottom right with parameter g = 1.5.

Th above results allow to establish the following exact rela-
tionship between these two quantifie s; that is,

J1>F fora<o,
F,<F fora>0, (16)
Fi=F fora=0.

Figure 3 displays this mathematical relationship between
these two quantifiers. Notice that both Fisher information
intersect at « = 0 which means that, for ¢ — 1, they are
equal only when they analyze random white noise. For the
rest of Fisher information values, they seem to have opposite
behaviour. Standard wavelet Fisher information is higher
than Furuichi’s wavelet Fisher information for & > 0 but it is
less than when « < 0. As can be noted in Figure 3, the analysis
of 1/ f* signals with standard versions of generalized Fisher
information is limited and thus the attention is now turned to

the case g # 1. The relationship between these two quantifie s
for the case g # 1 is obtained by fi st recalling that, for g € R,
the following holds [20]:

In, (x) < L. (17)

Based on this, it is observed that the following relationship is
satisfi d:
Ing (2%) >2% -1 forg<0
(18)
lnq (2%)<2%-1 forg>0.
Th s, for g < 0, lng(Z“) < (2% = 1)* for the case « < 0 and
for the case & > 0, ln;(Z“) > (2% — 1). For nonnegative g,
lné(Z“) > (2% = 1)? holds for a < 0 and for the case @ > 0,

lné(Z“) < (2% - 1)~ Although some differences are observed
between these two quantifie s, both Fisher information are
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Figure 3: Comparison of standard wavelet Fisher’s information
(red-yellow plane) with generalized wavelet Fisher’s information for
q — 1 (green plane).

equal at « = 0 and some similar behaviour are observed for
different values of the parameter q. The above results allow
us to obtain an exact relationship between generalized wave-
let Fisher information of parameter q and wavelet g-Fisher
information in the following way:

k4
o, o )
q— 1

Sinhy.., ()
y sinh,_, (u;) {pnum} s
Sinh?—vz (“2) Pien 1

where P, and P, are given by the following polynomial
expressions:

(19)

Pnum = 2COShl—VI/(M—Z) (ul (M - 2))
+ 2COSh17V1/(M74) (ul (M - 4))
+2coshy_, e (1 (M =6)) + -+,
(20)
Pyen = 2coshy_, gy (4 (M = 1))
+2coshy_, jr-3) (1 (M = 3))

+2coshy_,, sy (4 (M = 5)) +---

with u; = (qunq(Z)/Z, u, = quy, v, = 2(1 — q)/(agq), and
vy =qv [7].

4. Applications

Figure 4 displays the behaviour of 1/ f* signals Fisher infor-
mation for -2 < « < 3 and values of g = {-1,-3,-10}.
Note that as g decreases, the exponential increase of Fisher
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Figur e 4: Generalized wavelet Fisher’s information for several
values of the parameter q (g negative). As g becomes more negative,
the exponential increase for the nonstationary signals is emphasized.

information is higher. Thi behaviour can be used to apply
generalized wavelet Fisher information to a variety of phe-
nomena. First, generalized Fisher information can be used
to detect nonstationary behaviour within stationary signals.
In addition, it can also be used to extend the analyses of
standard Fisher information in EEG and nonlinear signals in
[10, 11. Another application can also be in the classific tion
of scaling signals as stationary or nonstationary. Th classi-
fication as stationary or nonstationary has been recognized
as fundamental for 1/ f signal analysis and estimation. Other
application area is on the detection and location of weak
structural breaks within 1/f signals. In this context, weak
level-shift detection and location can be mapped to the
problem of detecting the transition from zero to exponen-
tially increasing Fisher information. As a matter of fact, as
would be explained in the next section, level-shift detection
in the context of generalized wavelet Fisher information
is simply the problem of detecting and locating impulses
which indicate the presence and location of level-shifts Next
section focuses on the detection and location of weak level-
shift embedded within fGn signals, a particular class of 1/ f
signals.

5. Detection of Level-Shifts with
Fisher Information

Th detection of weak level-shift embedded in random sig-
nals is of importance in many disciplines of science since they
indicate the presence of some irregularity in the phenomena.
Level-shifts can indicate the presence of a change in an
economical policy [37], the presence of a malignant tumor in
a magnetic resonace image (MRI) signal [38], and so forth.
Although important and widely studied, level-shift detection
is still complex and time-consuming, specially for highly
correlated waveforms [39]. In the following, the results of
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the joint application of the generalized wavelet Fisher infor-
mation and the F-statistic for the detection and location of
weak level-shift are discussed. The wavelet Fisher informa-
tion is used as a preprocessing technique and the F-statistic as
a location and detection methodology. Th purpose of using
this joint technique is for enhancing the detection/location
and to reduce the time required to get an estimate as well.
Th detection/location procedure is started by computing the
generalized wavelet Fisher information in sliding windows of
length W and sliding factor A. With this, the time evolution
of generalized wavelet Fisher information, denoted by 7,,,, is
obtained by applying (9) to subsets of the data of the form:

1)

X(m;W,A)=X(tk)H<t_MA 1),

A

for various m, where m = 0,1,2,3,...,m,,, and II(-) is
the well-known rectangular function. A plot of W + mA
versus 7, form = 0,1,2,3,...,m,,, represents the time
evolution of generalized wavelet Fisher information. The
work of Stoev et al. [31] demonstrated that a sudden jump in
the structure of a self-similar fGn signal caused its theoretical
Hurst parameter in the wavelet domain to be H > 1. In
view of this, the jump will cause the Fisher information of
the sudden jump to change from zero Fisher information
to highly increasing Fisher information; therefore, the time
evolution plot of the generalized Fisher information will show
the presence of a weak level-shift in the form of an impulse-
like signal. Therefore, an impulse shaped function in the
generalized wavelet Fisher information indicates the presence
of alevel-shift in the signal under study. It is important to note
that by the use of the generalized wavelet Fisher information
the objective is twofold. First is to highlight further the
detection of the weak level-shift and secondly to decrease the
time required for obtaining a detection and location estimate.
In order to achieve a detection and location estimate, the F-
statistic is used.

5.1. Level-Shift Detection in fGn Signals. Figure 5 shows the
generalized wavelet Fisher information of a fGn signal with
Hurst parameter H = 0.6 and a single level-shift at time
t = 4096, that is, located in the middle of the signal. Th

level shif t s small and its magnitude is of Vo?/2, where ¢*
is the signal variance. Generalized Fisher information in the
wavelet domain is computed with g = -1 using windows
of W = 512 and A = 256. Note that the resulting time-
evolution of generalized wavelet Fisher information displays
an impulse-shaped form at t = 4096 indicating that a level-
shift is located around that point. Increasing the window
length W increases accuracy and long windows are preferred
whenever H — 1. Decreasing g further increases the
Fisher information values and as a consequence increases
the detection/location process maintaining the form of the
graph, that is, as an impulse shaped form. The generalized
wavelet Fisher information, therefore, enhances the detection
procedure and outputs a small length signal. Note that level-
shift detection can even be done by eye. In order to get a better

Generalized wavelet Fisher information, £, for {Gn signal with level-shift

40 + g

W
(=}
T
1

Fisher information #, q
p— [\)
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T T
.

1,000 2,000 3,000 4,000 5,000 6,000 7,000
Time index, ¢

Figur e 5: Level shift detection of generalized Wavelet Fisher infor-
mation, ]q. The fGn signal is of length N = 8192, H = 0.6, and
is analyzed in windows of W = 512, A = 256. Note that the level
shift located in 7, = 4096 is captured by the impulse of Fisher
information.

location and detection, the F-statistic is used. Using the F-
statistic, the resulting location estimate is 4096, that is, the
exact place where the level-shift is located.

5.2. Results for Fractional Gaussian Noise Signals. Figure 6
displays the results of the detection and location estimates of a
single level-shift within fGn signals of parameter H using the
F-statistic alone and various versions of the joint Fisher/F-
statistic technique. The level-shift were set at t = 4096
and for each value of H, 50 fGn signals with a single level-
shift were generated. Top left plot shows the results for the
F-statistic. Note that small variations in the estimates are
observed for H < 0.6 while for H > 0.6 the variations
increase correlation in the 1/f* signal. Top right graph of
Figure 6 displays the joint application of generalized wavelet
Fisher information as a preprocessing tool and the F-statistic
as a detection/location technique. It is observed that no
variantion is observed when H < 0.6 and when H > 0.6 the
variation is constant although the average estimates are 4096.
The variance is higher than those observed for the F-statistic
for H = 0.7 and H = 0.8. This same behaviour is observed
for the case g = —20 and W = 1024 (bottom left plot) and it
is only when W = 2048 that the joint technique outperforms
the results of the F-statistic.

6. Conclusions

In this paper, generalized wavelet Fisher information of
parameter q was defin d as a wavelet-domain extension of
the Furuichi’s generalized Fisher information. Closed-form
formulas for the generalized wavelet Fisher information were
obtained for the class of 1/ f* signals and those expressions
allowed to construct 1/ f signal Fisher information planes
and compare their properties with those of wavelet g-Fisher
information. 1/ f signal Fisher information planes describe
the characteristics and properties of generalized wavelet
Fisher information for 1/ f signals and permitted to propose
several applications for the analysis and estimation of these
signals. An application of particular interest was the detection
and location of weak level-shift within fGn signals and
it was demonstrated, using a detailed statistical study, that
generalized wavelet Fisher information in conjunction with
the F-statistic detects and locates weak level shift in these
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Figur e 6: Boxplots that represent the detection capabilities of the F-statistic (top left plot) and several version of the joint Fisher/F-statistic
procedure for fractional Gaussian noise signals. Top right plot displays the results for the joint technique using W = 1024 and g = -10,
bottom left plot shows the results for the joint technique with W = 1024 and g = —20 and finally bottom right plot presents the results for the
joint technique with W = 2048 and g = —10. The level shift was located at t = 4096.

signals. By appropiately selecting the value of g and the length
W of the anlalysing window, the proposed technique can our-
perform the results obtained by using the F-statistic alone.
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