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Statistical analysis and synthesis of self-similar discrete time signals are presented. The analysis equation is formally defined
through a special family of basis functions of which the simplest case matches the Haar wavelet. The original discrete time series
is synthesized without loss by a linear combination of the basis functions after some scaling, displacement, and phase shift. The
decomposition is then used to synthesize a new second-order self-similar signal with a different Hurst index than the original.
The components are also used to describe the behavior of the estimated mean and variance of self-similar discrete time series.
It is shown that the sample mean, although it is unbiased, provides less information about the process mean as its Hurst index is
higher. It is also demonstrated that the classical variance estimator is biased and that the widely accepted aggregated variance-based
estimator of the Hurst index results biased not due to its nature (which is being unbiased and has minimal variance) but to flaws in
its implementation. Using the proposed decomposition, the correct estimation of the Variance Plot is described, as well as its close
association with the popular Logscale Diagram.

1. Introduction

In the past decades, the self-similar processes and long-range
dependence (LRD or long memory) have been applied to the
study andmodeling of many natural andman-made complex
phenomena. These kinds of processes have been particularly
attractive in the pursuit of optimal design and configuration
of network communications.

The published work of Leland et al. in 1993 and 1994 [1, 2]
demonstrated that Ethernet traffic is statistically self-similar
and that the commonly used models are unable to capture
that fractal behavior, highlighting that a burstiness and LRD
are present when 𝐻 > 0.5. Since then, researchers have
been studying extensively long memory processes and their
impact on network performance, for example, Karagiannis et
al. stated that the identification of LRD is not trivial and that
not all scenarios in modern networks present LRD charact-
eristics, for example, traffic in the Internet backbone is more
likely to be Poisson type instead of LRD [3].

Many researchers have also addressed their studies to
determine if network traffic is sufficiently modeled by
self-similar processes or a more general model is needed, for

example, one that considersmultiscaling ormultifractality [4–
6].The advantage of the capability to model complex systems
with self-similar processes is that the correlation structure is
defined by a single parameter: the Hurst index (𝐻).

Unlike other statistics, the Hurst index, although it is
mathematically well defined, cannot be estimated unam-
biguously from real world samples. Several methods have
been developed then in order to estimate it. Examples of
classical estimators are those based onR/S statistic [7] (and its
unbiased version [8]), detrended fluctuation analysis (DFA)
[8, 9], maximum likelihood (ML) [10], aggregated variance
(VAR) [7], wavelet analysis [11, 12], and so forth. In [13],
Clegg developed an empirical comparison of estimators for
data in raw form and corrupted. An important observation
is that the estimation of the Hurst index may differ from one
estimator to another, and the selection of the most adequate
estimator is a difficult task. This selection depends greatly on
howwell the data samplemeets the assumptions the estimator
is based on. However, through analytical and empirical stud-
ies, it has been discovered that the estimators that have
the best performance in bias and standard deviation, and,
consequently, in mean squared error (MSE) are Whittle ML
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and thewavelet-based estimator proposed byVeitch andAbry
in [11].

From these two estimators, the wavelet based is compu-
tationally simpler and faster [7, 11].

In addition to the Hurst index, other statistical character-
istics are needed to describe the phenomenon under study.
The most common are the first and second-order statistics,
that is, mean, variance, and correlation. The classical esti-
mators of these characteristics have been proposed decades
ago, for example, Kenney and Keeping demonstrated in 1939
and 1951 that the classical variance estimator is unbiased
for independent and identically distributed Gaussian obser-
vations [14, 15]. Confidence interval is also given for these
estimations, for example, 𝑃[𝑋 ∈ (−3/√𝑁, 3/√𝑁)] ≈ 99%
(where𝑋 is the sample mean estimated from a sample of size
𝑁) for a standardized white noise process. This confidence
interval is narrower as the sample size increases.

It has been claimed that most processes satisfy those
common assumptions [16]. As it has been expressed, however,
other authors (Leland et al. [1], Taqqu et al. [5], Tsybakov
and Georganas [17], Veitch and Abry [11], and many others)
conclude that traffic characteristics present correlation and
that the estimation of these statistics (including confidence
interval) with the classical estimators (which do not consider
correlation) may lead to estimation errors and, consequently,
to wrong decisions or inaccurate models, especially when
data presents accentuated LRD.

Several estimators of theHurst index have been proposed,
but many of them do not consider the effect of correlation
on the estimation of first- and second-order statistics, thus
applying incorrectly the classical formulae. Particularly, it has
been claimed that the aggregated variance method can only
be used as a heuristicmethod, and that theVariance Plot (also
named Variance-time Plot; see Section 2.3) can only be used
to check whether the time series is self-similar or not and, if
so, to obtain a crude guess for the Hurst index [22, page 44].
Thiswork clarifies this point, demonstrating that theVariance
Plot can be estimated efficiently and that the estimation of the
Hurst index from it is actually unbiased and has minimum
variance (similarly to the wavelet-based estimator).

This work is motivated by the mentioned importance of
the self-similar processes inmany areas, especially in the ana-
lysis andmodeling of Internet traffic, and by the fact that there
are still somemisunderstandings and bad practices that must
be overcome.

This document is organized as follows. Section 2 defines
the discrete time self-similarity and some of its statistical
properties. Section 3 describes the proposed set of basis func-
tions and the analysis and synthesis equations, which are used
to generate self-similar samples whose Hurst index matches
the estimator proposed by Veitch et al. and the corrected ver-
sion of the variance-based estimator. Section 4 defines sta-
tistics for the sample mean and variance of self-similar
discrete processes; Section 5 explains how the variance-based
estimator has been misunderstood and defines the correct
estimator, which coincides with the Haar wavelet based in
a particular case. Section 6 presents some simulations and
measurements and, finally, Section 7 concludes the work.

2. Self-Similarity

Self-similarity describes the phenomenon where certain pro-
perties are preserved irrespective of scaling in space or
time. Deterministic self-similarity is clearly exemplified by
popular figures as Sierpinski’s triangle or Koch’s snow flake.
This form of self-similarity is named scale invariance and
makes different scales of the same object undistinguishable.
Stochastic self-similarity is not that obvious, it refers to how
statistical properties of a stochastic process are preserved
under time expansion. Stochastic self-similarity is defined for
continuous and discrete time stochastic processes.

Self-similarity (either continuous or discrete time) is
tightly related to short- and long-range dependencies (SRD
and LRD, resp.). The degree of self-similarity is defined and
measured through the so named Hurst index 𝐻 (0 < 𝐻 <

1). It is known that processes with 𝐻 < 0.5 are SRD, and
processes with 𝐻 > 0.5 are LRD. If 𝐻 = 0.5, neither SRD
nor LRD are present. For example, the commonly used white
Gaussian noise (WGN) has always 𝐻 = 0.5 and does not
present any time dependency.

Processes with LRD are also named long memory, as cur-
rent and future realizations of these are strongly correlated.
The dividing line between SRD and LRD processes is not
ambiguous; for LRDprocesses, the autocovariance function is
not absolutely convergent (i.e., the sum is not finite), while it is
for SRD processes.This work refers only to stochastic discrete
time self-similarity.

2.1. Discrete Time Self-Similarity. The definition of discrete
time stochastic self-similarity is given in terms of the
aggregated processes. Let {𝑋

𝑡
; 𝑡 ∈ N} be a discrete time

series derived from a self-similar process with stationary
increments andHurst index𝐻 (𝐻-SSSI).The aggregated time
series, derived from𝑋

𝑡
is the sequence given by [17]

𝑋(𝑚) = {𝑋
(𝑚)

𝑘
; 𝑘 ∈ N} , (1)

where each term𝑋
(𝑚)

𝑘
is defined as

𝑋
(𝑚)

𝑘
=
1

𝑚

𝑘𝑚

∑

𝑖=(𝑘−1)𝑚+1

𝑋
𝑖
, 𝑘 ∈ N, (2)

where 𝑚 represents the aggregation level. That is, each new
time series is obtained by partitioning the original time series
into nonoverlapping blocks of size𝑚 and then averaging each
block to obtain its respective values.

Let𝑋
𝑡
be a covariance stationary discrete time series with

mean 𝜇
𝑋

= 0, variance 𝜎2
𝑋

and autocovariance function
(ACvF) 𝛾

𝑋
(𝑘) and 𝑋(𝑚)

𝑘
its aggregated series. Then it is said

that𝑋
𝑡
is self-similar (𝐻-SS), if the following holds [18]:

𝑋
(𝑚)

𝑘
∼ 𝑚
𝐻−1

𝑋
𝑡
, (3)

where ∼means equality in distribution.
The many methods for generating artificial discrete time

self-similar sequences are classified in sequential and fixed
length. All these have particular advantages and shortcom-
ings associated to accuracy, generation time, memory or
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processing resources, and so forth. Sequential generators are
sometimes more appropriate for long duration simulations,
but the level of approximation and several parameters are
needed, while fixed length only depends on the desired Hurst
index but may need to store part or all of the sequence
in memory. For the purpose of the simulations described
in Section 6, a fixed-length Davies-Harte fractional Gaus-
sian noise (FGN) generator is used. FGN is a special type
of noise where the autocovariance function has a special
shape (expression (8)). Section 3.2 describes a theoretical
method to synthesize self-similar discrete sequences using
Haar wavelet-based decomposition. Although Daubechies
wavelet- (DW-) based approximations are better in mean
and variance, the Haar-based method generates a self-similar
sequence of specified Hurst index from practically any given
sequence, regardless of whether it is self-similar or not if
some conditions are met [19]. For other applications, DW are
preferred; see [20] as an example.

2.2. Properties of Self-Similar Discrete Time Series. The defi-
nition of discrete stochastic self-similarity (3) has important
implications about the stochastic process 𝑋

𝑡
; these implica-

tions include the following properties [21].

(i) Zero-mean:

𝐸 (𝑋
𝑡
) = 𝐸 (𝑋

(𝑚)

𝑘
) = 0. (4)

(ii) Power law of the 𝑞th order moments:

𝐸 [(𝑋
(𝑚)

𝑘
)
𝑞

] = 𝑚
𝑞(𝐻−1)

𝐸 [(𝑋
𝑡
)
𝑞

] . (5)

(iii) Power law of the 𝑞th order absolute moments:

𝐸(

𝑋
(𝑚)

𝑘



𝑞

) = 𝑚
𝑞(𝐻−1)

𝐸 (
𝑋𝑡



𝑞

) . (6)

2.3. Second-Order Discrete Self-Similarity. The second-order
definition of self-similarity is derived from (5) for 𝑞 = 2.
The variance of the aggregated time series is defined by the
following [17]:

var (𝑋(𝑚)
𝑘
) = 𝑚

2𝐻−2var (𝑋
𝑡
) . (7)

An equivalent definition is

𝛾
(𝑚)

𝑋
(𝑘) =

𝜎
2

𝑋

2
[(𝑘 + 1)

2𝐻
− 2𝑘
2𝐻

+ (𝑘 − 1)
2𝐻
] , 𝑘 ≥ 0,

(8)

where 𝛾(𝑚)
𝑋

(𝑘) is the autocovariance function of𝑋(𝑚)
𝑘

.
If a discrete time series 𝑋

𝑡
satisfies these conditions, it

is called second-order self-similar with Hurst index 𝐻 (𝐻-
SOSS). Note that the mean of an 𝐻-SOSS process is not
necessarily zero.

The plot log[var(𝑋(𝑚)
𝑘
)] versus log(𝑚) is known as Vari-

ance Plot. It is a straight line of slope 2𝐻 − 2 for self-
similar processes. This plot is the basis of the variance-
based estimator of the Hurst index. It has been “shown” in

the literature that the variance-based estimator underesti-
mates the Hurst index and that the variance-based estimator
throws a coarse estimation of the true Hurst index. Section
5 demonstrates that this is a consequence of inadequate
implementations of this estimator, that is, the aggregated
variance is estimated with the classical formula (36), which is
not correct if any correlation exists. An apparent solution is to
use the proposed unbiased estimator, but that leads to an ill-
conditioned problem: the Hurst index is needed to estimate
the variance and vice versa. The solution for this situation is
also described (see Section 5.1).

2.4. Wavelet Decomposition and the Logscale Diagram. The
wavelet decomposition transforms a signal 𝑋

𝑡
into a sum of

orthogonal components as follows:

𝑋
𝑡
=

𝐽

∑

𝑗=𝑖

2
𝑗

∑

𝑘=1

𝑑
𝑋
(𝑗, 𝑘) 𝜓

𝑗,𝑘
(𝑡) , (9)

where each function 𝜓
𝑗,𝑘
(𝑡) is derived from a basis function

𝜓
0
(𝑡), namely, the mother wavelet, by scaling and displace-

ment, that is,

𝜓
𝑗,𝑘
(𝑡) = 2

−𝑗/2
𝜓
0
(2
−𝑗
𝑡 − 𝑘) , (10)

and coefficients 𝑑
𝑋
(𝑗, 𝑘) is the value at time 𝑘 of scale 𝑗,

computed as an inner product between the signal𝑋
𝑡
and the

wavelet function 𝜓
𝑗,𝑘
(𝑡):

𝑑
𝑋
(𝑗, 𝑘) = ⟨𝑋 (𝑡) , 𝜓

𝑗,𝑘
(𝑡)⟩ . (11)

The statistic 𝑠
2
(𝑗) is then defined from these coefficients

as

𝑆
2
(𝑗) = 𝐸

𝑑𝑋 (𝑗, ⋅)


2

, (12)

which, for an 𝐻-SOSS process, is related to the Hurst index
as

𝑆
2
(𝑗) = 𝑐

𝑓
𝐶2
𝑗(2𝐻−1)

, (13)

where the quantity 𝑐
𝑓
𝐶, related to the power of the process, is

considered a constant.
The plot log

2
𝑆
2
(𝑗) versus 𝑗 forms the widely known

Logscale Diagram described by Veitch and Abry [11]. The
Logscale Diagram of an 𝐻-SOSS process is a straight line of
slope 2𝐻 − 1. To obtain an unbiased estimation of the Hurst
index based on the Logscale Diagram, it is also necessary to
subtract the bias that results of averaging the logarithms of
the respective variance of real world time series, which is esti-
mated as [11]

𝑔
𝑗
=

Ψ (𝑛
𝑗
/2)

ln (2)
− log
2
(

𝑛
𝑗

2
) , (14)

where 𝑛
𝑗
is the number of coefficients available at octave, that

is

𝐸{log
2
[var (𝐶 𝑛,𝑖

𝑋,𝑡
)]} ≈ 𝐸 {log

2
[var (𝐶 𝑛,𝑖

𝑋,𝑡
)]} − 𝑔

𝑗
. (15)
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If the Logscale Diagram of a time series cannot be ade-
quately modeled with a linear model, possibly the scaling
behavior needs to be described with more than one scaling
parameter, that is, the Hurst parameter is not adequate (or
insufficient) [22, 23]. However, even if the time series under
study is not self-similar, the Logscale Diagram can show
whether or not it presents LRD.

3. An Orthogonal Decomposition Performed
by Subtracting Aggregated Series

Thetime series𝑋
𝑡
can be decomposed into a set of time series,

each one defined as

𝐶
𝑛,𝑗

𝑋,𝑡
= 𝑋
(𝑛
𝑗−1
𝐸)

𝑡
− 𝑋
(𝑛
𝑗
𝐸)

𝑡
, 𝑛, 𝑗 ∈ N, (16)

where𝑋(𝑛
𝑗
𝐸)

𝑡
is the time series𝑋

𝑡
after two operations, which

are as follows.

(1) Aggregation at level 𝑛𝑗, as defined by (1) and (2), that
is,𝑚 = 𝑛

𝑗.
(2) Expansion of level 𝑛𝑗, which consists of “repeat” each

element of a time series 𝑛𝑗 times, that is,𝑋(𝑛
𝑗
𝐸)

𝑡
= 𝑋
(𝑛
𝑗
)

𝑘

for 𝑘 = 1 + ⌊(𝑡 − 1)/𝑛𝑗⌋ and 𝑗 ∈ N.

These zero-mean components 𝐶𝑛,𝑗
𝑋,𝑡

have three important
properties.

(i) They synthesize the original time series without loss
(assuming zero-mean), that is,

𝑋
𝑡
= ∑

𝑗

𝐶
𝑛,𝑗

𝑋,𝑡
. (17)

(ii) They are pair-wise orthogonal:

⟨𝐶
𝑛,𝑗1

𝑋,𝑡
, 𝐶
𝑛,𝑗2

𝑋,𝑡
⟩ = 0, 𝑗

1
̸= 𝑗
2
. (18)

(iii) If 𝑋
𝑡
is exactly or at least second-order self-similar,

then the variance of its components satisfies

var (𝐶𝑛,𝑗
𝑋,𝑡
) = 𝑟 ⋅ var (𝐶𝑛,𝑗−1

𝑋,𝑡
) , (19)

where

𝑟 = 𝑛
2𝐻−2

. (20)

Another useful property relates the variance of the com-
ponent to the variances of the aggregated series, that is,

var (𝐶𝑛,𝑗
𝑋,𝑡
) = var [𝑋(𝑛

𝑗−1
𝐸)

𝑡
] − var [𝑋(𝑛

𝑗
𝐸)

𝑡
] . (21)

It is easy to proof (21): from (16), it turns out that
var[𝐶𝑛,𝑗

𝑋,𝑡
] = var[𝑋(𝑛

𝑗−1
𝐸)

𝑡
]+var[𝑋(𝑛

𝑗
𝐸)

𝑡
]−2 cov[𝑋(𝑛

𝑗−1
𝐸)

𝑡
, 𝑋
(𝑛
𝑗
𝐸)

𝑡
],

but as 𝑋(𝑛
𝑗
𝐸)

𝑡
is itself an aggregation of 𝑋(𝑛

𝑗−1
𝐸)

𝑡
it turns out

that cov[𝑋(𝑛
𝑗−1
𝐸)

𝑡
, 𝑋
(𝑛
𝑗
𝐸)

𝑡
] = var[𝑋(𝑛

𝑗
𝐸)

𝑡
], and (21) comes after a

substitution.

Properties (i), (ii), and (iii) imply that

𝜎
2

𝑋
= ∑

𝑖

var (𝐶𝑛,𝑗
𝑋,𝑡
) ,

𝜎
2

𝑋
=

1

1 − 𝑟
var (𝐶𝑛,1

𝑋,𝑡
) .

(22)

Then, the variance of the 𝑗th component is related to the
variance of𝑋

𝑡
as

var (𝐶𝑛,𝑗
𝑋,𝑡
) = (1 − 𝑟) 𝑟

𝑗−1
𝜎
2

𝑋
. (23)

It is easy to prove the following relation:

var (𝐶𝑛,𝑗
𝑋,𝑡
) = 𝑛
−𝑗
𝑆
2
(𝑗) . (24)

An immediate consequence of (24) is that the plot 𝑗 +
log
𝑛
[var(𝐶𝑛,𝑗

𝑋,𝑡
)] versus 𝑗 is equivalent to the Logscale Diagram.

It is a straight line for 𝐻-SOSS time series, and the slope is
related to the Hurst index so that 𝑠 = 2𝐻 − 1.

For example, for 𝑛 = 2 the statistics var(𝐶2,𝑗
𝑋,𝑡
) and 𝑆

2
(𝑗)

are related as

var (𝐶2,𝑗
𝑋,𝑡
) = 2
−𝑗
𝑆
2
(𝑗) , (25)

and in this case the basis function is the Haar wavelet, which
is defined as [24, 25]

𝜓
0
(𝑡) =

{{{{

{{{{

{

+1, 0 ≤ 𝑡 <
1

2
,

−1,
1

2
≤ 𝑡 < 1,

0, otherwise.

(26)

Figure 1 shows the components obtained from an 𝐻-
SOSS sample of size 32 and𝐻 = 0.9. The squared form of the
components is due to the expansion of the aggregated series
and disappears after the downsampling.

The authors of [26] described the aggregation as an inner
product with the signal and the Haar “father” wavelet, and
then, the relation between wavelet coefficients and aggre-
gation levels is obvious. At this point there are similarities
between this section and that previous work, themost impor-
tant is that the relation between aggregation levels and Haar
wavelet is described by Abry et al. However, two differences
must be highlighted: (1) the decomposition presented in
this work only coincides with that definition for 𝑛 = 2 in
(16); for higher values, the Haar wavelet is not sufficient to
describe the components of (16); and (2) authors of [26]
discard anyway the estimation of the Hurst index based on
the so named “𝑎-aggregation.” In this work, it is clarified that
the “𝑎-aggregation” is misunderstood leading to incorrect
implementations (i.e., the “classical” variance estimator), and
a generalization of the “𝑑-aggregation” is proposed.

3.1. GeneralWaveform of the Basis Functions. Theorthogonal
decomposition defined by (16) can be expressed in terms of
an inner product between the signal and a set of orthogonal
wavelet-type functions. Let us describe the waveform for the
general case.
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Figure 1: Components of an𝐻-SOSS sample of size 32 and𝐻 = 0.9.

The wavelet-based function is

𝜓
𝑛
(𝑡) =

{{{{{{

{{{{{{

{

1 −
1

𝑛
, 0 ≤ 𝑡 <

1

𝑛
,

−
1

𝑛
,

1

𝑛
≤ 𝑡 < 1,

0, otherwise,

(27)

and the wavelet functions derived from 𝜓
𝑛
(𝑡) are obtained

by three operations: scaling, displacement (similarly to (10)),
and a phase shift, that is,

𝜓
𝑛,𝑗,𝑘,𝜃

(𝑡) = {1 − 𝑢 [𝑛
𝑗
(𝑘 − 1)]} 𝜓

𝑛,𝑗,𝑘
(𝑡 − 𝜃𝑛

𝑗−1
)

+ 𝑢 [𝑛
𝑗
(𝑘 − 1)] 𝜓

𝑛,𝑗,𝑘
(𝑡 + 𝑛

𝑗
− 𝜃𝑛
𝑗−1
) ,

𝜓
𝑛,𝑗,𝑘

(𝑡) = 𝑛
−𝑗/2

𝜓
𝑛
(𝑛
−𝑗
𝑡 − 𝑘) ,

(28)

for 𝑗 = 1, 2, . . . , 𝐽, 𝑘 = 0, 2, . . . , 𝑛𝐽−𝑗−1, and 𝜃 = 0, 1, 2, . . . , 𝑛−
1. Note that note that 𝜓

𝑛,0,0,0
(𝑡) = 𝜓

𝑛
(𝑡).

The function defined by (27) is a generalized form of the
Haar wavelet. It is always a rectangle-shaped function, but it
is not symmetric about the horizontal axis except for 𝑛 = 2.

Figure 2 shows the basis function for 𝑛 = 2 without
phase shift and with a phase shift of 1/2, respectively.
Obviously, ⟨𝑋(𝑡), 𝜓

2,𝑗,𝑘,0
(𝑡)⟩ = −⟨𝑋(𝑡), 𝜓

2,𝑗,𝑘,1
(𝑡)⟩, which

means that both products give the same information. Redun-
dant information can then be reduced by decimating the
sequence of coefficients.

Figure 3 shows the basis function for 𝑛 = 3. Note that
the phase shift moves the rectangle of height 2/3 from one-
third to another. In this case, there exists also redundant
information, as 𝜓

3,0,0,2
(𝑡) = −𝜓

3,0,0,0
(𝑡) − 𝜓

3,0,0,1
(𝑡) and in the

general case 𝜓
𝑛,𝑗,𝑘,𝜃

(𝑡) = −∑
𝑖 ̸= 𝜃

𝜓
𝑛,𝑗,𝑘,𝑖

(𝑡), which means that
one of the coefficients, for example, the one obtained with
the last phase shift, can be discarded. This means that the
sequence of coefficients can be downsampled without loss of
information. For a sample of length𝑁, it is easy to verify that
the number of observations that remains in all components
(sequences of coefficients) after the downsampling is 𝑁 − 1,
which can be complemented with the sample mean, in the
case that this is not zero.

3.2. Wavelet Synthesis of Self-Similar Time Series. A method
to synthesize 𝐻

1
-SOSS from practically any time series,

regardless of whether it is or not self-similar or its marginal
distribution, is proposed. This method consists of adjusting
the sum expressed by (9) with a set of weights, that is,

𝑋
𝐻1
(𝑡) =

𝐽

∑

𝑗=𝑖

𝑤
𝑗

2
𝑗

∑

𝑘=1

𝑑
𝑋
(𝑗, 𝑘) 𝜓

𝑗,𝑘
(𝑡) , (29)
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where these weights 𝑤
𝑗
are defined as

𝑤
𝑗
= √

𝑐
𝑓
𝐶 ⋅ 2
𝑗(2𝐻1−1)

𝑆
2
(𝑗)

, (30)

where 𝑆
2
(𝑗) and 𝑐

𝑓
𝐶 are the respective estimations of 𝑆

2
(𝑗)

and 𝑐
𝑓
𝐶 (the associated power parameter [4]) from 𝑋

𝑡
and

𝐻
1
is the desired Hurst index of the new synthetic series. It is

necessary that 𝑆
2
(𝑗) > 0 for all 𝑗 = 1, . . . , 𝐽.

The weighted sum (29) can also be expressed in terms
of the orthogonal components described in Section 3 and
defined by (16) as follows:

𝑋
𝑡
=

𝐿

∑

𝑖=1

𝑤
𝑖
𝐶
𝑛,𝑖

𝑋,𝑡
, (31)

where the weights 𝑤
𝑖
are computed as

𝑤
𝑖
= √𝑟
𝑖−1 ⋅

1 − 𝑟
𝐿

1 − 𝑟
⋅

�̂�
2

𝑋

var {𝐶 𝑛,𝑖
𝑋,𝑡
}

, (32)

where 𝑟 is defined by (20). Note that the only restriction
of (32), similarly to (30), is that the estimated variance
𝐶
𝑛,𝑖

𝑋,𝑡
must be nonzero. Even though this synthesis does not

depend either on the marginal distribution or the correlation
structure of the input signal, it is preferable that this is self-
similar (e.g., FGN) and that its Hurst index is close to that of
𝑋
𝐻1
(𝑡), that is,𝐻

1
≈ 𝐻.

Pathological behavior can be produced in the output
series for some critical conditions, for example, noticeable
steps, which may produce a nonstationary signal, result from
transforming an SRD, or uncorrelated input signal to an LRD
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output with 𝐻 close to 1. Impulses of very large magnitude
(outliers) can be also be produced when, for some 𝑗, 𝑆

2
(𝑗) is

close to zero.
A similar methodology was developed by Deléchelle et al.

[27], to synthesize fractional Gaussian noise by performing
a weighted sum of the intrinsic mode functions (IMF) of a
white noise process.The advantages of the proposed synthesis
compared to that of Deléchelle et al. are that the components
defined by (16) are exactly orthogonal, the relation between
the weights for the reconstruction sum are mathematically
well defined, and the Hurst index of the synthesized time
series matches perfectly the wavelet estimator proposed by
Abry et al. [4], that is, the estimated 𝐻 of the synthesized
series is unbiased (𝐸(�̂�) = 𝐻) and has zero variance
(var(�̂�) = 0). The disadvantages are that the components
are sequences of squared signals (because of the expansion
described in Section 3) and not sinusoids, and noticeable
steps arise when synthesizing a time series with high Hurst
index, for example, close to 1, from an input that is SRD or
weakly correlated. A solution for this problem is to apply
interpolation (as in EMD) instead of expanding the series in
order to produce softer components (sinusoids or polyno-
mial) instead of square type, with the consequence that the
Hurst index is no longer exact, but approximated.

4. Estimation of Mean and Variance
Self-Similar Time Series

4.1. Sample Mean. The sample mean of a self-similar process
is unbiased: its expected value is the process mean, that is,
𝐸(𝑋) = 𝜇

𝑋
, where 𝑋 = 1/𝑁∑

𝑁

𝑡=1
𝑋
𝑡
, regardless of the pre-

sence of correlation between observations. However, its vari-
ance does not depend only on the sample size (𝑁) but also on
the degree of self-similarity (𝐻) of the process as follows:

var (𝑋) = 𝜎2
𝑋
𝑁
2𝐻−2

, (33)

which becomes

var (𝑋) =
𝜎
2

𝑋

𝑁
, (34)

(classical estimator) for𝐻 = 0.5 (uncorrelated observations).
Figure 4 shows the probability distribution function (PDF) of
the sample mean of standardized FGN.

To derive (33), consider that 𝑋, estimated from a sample
of size 𝑁, behaves exactly the same as the stationary aggre-
gated process 𝑋

(𝑁)

𝑘
, defined by (1), and its variance is

determined by the definition of second-order self-similarity
(7). Expression (33) can be also derived (for 𝐻 > 0.5) from
the autocorrelation coefficient 𝜌(𝑘) = 0.5[(𝑘 + 1)

2𝐻
− 2𝑘
2𝐻
+

(𝑘 − 1)
2𝐻
] for 𝑘 ≥ 1 (𝜌(0) = 1) and var(𝑋) = (𝜎

2

𝑥
/

𝑁
2
) ∑
𝑁

𝑖,𝑗=1
𝜌(𝑘).

Important implications of (33) about the uncertainty of
the mean are (1) that it increases with the Hurst index, for
example, var(𝑋) tends to 𝜎2

𝑋
as𝐻 tends to 1, which makes the

samplemeanworth a single observation and (2) that it cannot
be zero for any case when estimated from a finite-size sample.
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Figure 4: Distribution of the sample mean of standardized frac-
tional Gaussian noise processes with 𝐻 = {0.50, 0.70, 0.90} and
𝑁 = 32.

4.2. Sample Variance. For a high number of observations,
sample variance is usually calculated as

�̂�
2

𝑋
=
1

𝑁

𝑁

∑

𝑡=1

(𝑋
𝑡
− 𝜇
𝑋
)
2

. (35)

It is known that estimator (35) is biased, so for small samples,
it is more adequate to use

�̂�
2

𝑋
=

1

𝑁 − 1

𝑁

∑

𝑡=1

(𝑋
𝑡
− 𝑋)
2

. (36)

Particularly, if the observations 𝑋
𝑡
are independent and

come from a normal distribution, �̂�2
𝑋
is distributed as �̂�2

𝑋
∼

(𝜎
2

𝑋
/𝑁)𝜒
2

𝑛−1
, as stated byCochran’s theorem [28, 29]. Formula

(36) is the most used estimator of the sample variance [14]
but, as Beran indicates in [30], it is needed to know which
assumptions this estimator is based on in order to apply it
correctly; otherwise, it may be the source of errors that in
practice cannot be negligible for all cases.

A self-similar process is uncorrelated only and only if
the Hurst index is 0.5. In this particular case, the classical
estimator of sample variance, defined by (36), is unbiased.

The expected value of the sample variance defined by (36)
is

𝐸 (�̂�
2

𝑋
) = 𝐸[

1

𝑁 − 1

𝑁

∑

𝑡=1

(𝑋
𝑡
− 𝜇)
2

] , (37)

which can be expressed as

𝐸 (�̂�
2

𝑋
) =

𝑁

𝑁 − 1
[𝐸 (𝑋

2

𝑡
) − 𝐸 (𝜇

2
)] , (38)

then,

𝐸 (�̂�
2

𝑋
) =

𝑁

𝑁 − 1
{var (𝑋

𝑡
) + [𝐸 (𝑋

𝑡
)]
2

− {var (𝜇) + [𝐸 (𝜇)]2}} ,

𝐸 (�̂�
2

𝑋
) =

𝑁

𝑁 − 1
𝜎
2

𝑋
(1 − 𝑁

2𝐻−2
) .

(39)
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Figure 5: Logarithm of the variance bias for different sample sizes.

Expression (39) proves that the classical estimator (36) is
biased (i.e., 𝐸(�̂�2

𝑋
) ̸= 𝜎
2

𝑋
) for𝐻 ̸= 0.5. It is straightforward that

the unbiased variance estimator for self-similar processes is
then

�̂�
2

𝑋
=

1

𝑁 − 𝑁2𝐻−1

𝑁

∑

𝑡=1

(𝑋
𝑡
− 𝑋)
2

, (40)

which obviously becomes (36) for𝐻 = 0.5.
A plot of log

10
(�̂�
2

𝑋
− 𝜎
2

𝑋
) versus 𝑁 is shown in Figure 5.

Note that, for a fixed sample size, as 𝐻 increases the esti-
mation of the variance by means of the classical estimator,
(36) becomes less significant.

Figure 5 exemplifies that as the sample size is greater,
the classical variance estimator has less bias; however, as the
Hurst index of the process is greater, the bias is also greater
(in magnitude). Note that as𝐻 approaches to 1, the variance
is considerably underestimated, which makes the classical
variance estimator useless.

The variance of the estimated variance of a self-similar
time series can be approximated by applying the formula
proposed by Yunhua in [31] for 𝑘 = 0, that is,

var (�̂�2
𝑋
) =

(2𝑁
4𝐻−3

+ 8𝐻 − 7) (2𝐻
2
) (2𝐻 − 1)

2

𝑁(4𝐻 − 3)
+
1

𝑁
.

(41)

This approximation is close to the variance of �̂�2
𝑋
, with the

disadvantage that it has a discontinuity in𝐻 = 0.75. Further
work can be developed in order to verify this approximation
and to quantify its error.

Let us mention that, although the proposed estimator
of the sample variance is unbiased, its performance relies
on the estimation of the Hurst index. This dependence is
very noticeable as 𝐻 approaches to 1, as the statistic 1 −

𝑁
2�̂�−2 is especially sensitive to the variation of �̂� under that

condition.Thederivative𝑑(1−𝑁2�̂�−2)/𝑑�̂� = −2𝑁
2�̂�−2 ln(𝑁)

versus 𝐻 is shown in Figure 6. Note that as the estimated 𝐻
increases, the estimation of the mean of the sample variance
is more variable.

An immediate implication of this is that processes with
Hurst index close to 1 must be carefully treated, as slight devi-
ations of the Hurst index estimation derive in a nonnegligible
error in the estimation of the process variance.
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Figure 6: Plot −2𝑁2�̂�−2 ln(𝑁) versus �̂�.

4.3. Statistics of the Aggregated Process. The aggregated pro-
cess 𝑋(𝑚)

𝑘
(defined by (2)) derived from an 𝐻-SS process is

also 𝐻-SS (self-similar with the same Hurst index). It is also
true for the case of 𝐻-SOSS processes, and this aggregated
process is, by definition, identically distributed to the sample
mean obtained from a set of 𝑁 = 𝑚 observations (𝑚 is
the aggregation level, as in (2)), that is, 𝑋(𝑚)

𝑘
∼ 𝜇. Also,

the aggregated sample variance obtained with the classical
estimator (36) is biased, as it is well known [32].

The variance of the aggregated series of an 𝐻-SOSS
process must be then estimated with the unbiased formula
(40) adapted to the number of observations in the sample,
that is,

var (𝑋(𝑚)
𝑘
) =

1

𝑁
𝑖
− 𝑁
2𝐻−1

𝑖

𝑁𝑖

∑

𝑘=1

(𝑋
(𝑚)

𝑘
− 𝑋
(𝑚)

𝑘
)

2

, (42)

where 𝑁
𝑖
is the size of the series after aggregation (i.e., 𝑁

𝑖
=

𝑁/𝑚). Note that the estimation of the sample mean from the
aggregated sample is also unbiased, that is, 𝐸[𝑋(𝑚)

𝑘
] = 𝐸(𝑋

𝑡
),

and it is more reliable than themean estimated from a sample
of the same size, that is, var[𝑋(𝑚)

𝑘
] = 𝑚

2𝐻−2var(𝑋) if the
samples are of equal size.

4.4. Statistics of the Orthogonal Components. Let {𝑋
𝑡
; 𝑡 =

1, . . . , 𝑁} be a finite-length self-similar time series such that
𝑁 = 𝑛

𝐽 (𝐽 < ∞) and 𝑛 ≥ 2 (i.e.,𝑁 is a power of 𝑛); then a set
of nonzero 𝐽 components (𝐶 𝑛,𝑗

𝑋,𝑡
; 𝑗 = 1, . . . , 𝐽) can be obtained

as expressed by the analysis (16). As the components are
pair-wise orthogonal, the variance of 𝑋

𝑡
(�̂�2
𝑋
) is the sum of

a finite number of variances:

�̂�
2

𝑋
=

𝐽

∑

𝑗=1

var (𝐶 𝑛,𝑗
𝑋,𝑡
) . (43)

Expressions (43) and (19) imply that the variance of the
𝑖th component (𝐶 𝑛,𝑖

𝑋,𝑡
) (computed using formula (35)), which

has also finite length, is

var (𝐶 𝑛,𝑖
𝑋,𝑡
) =

1 − 𝑟

1 − 𝑟𝐽
𝑟
𝑖−1
�̂�
2

𝑋
, (44)

and estimating var(𝐶𝑛,𝑗
𝑋,𝑡
) as in (23), it follows that

var (𝐶 𝑛,𝑖
𝑋,𝑡
) =

var (𝐶𝑛,𝑗
𝑋,𝑡
) (1 − 𝑁

2𝐻−2
)

1 − 𝑟𝐽
. (45)
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Replacing 𝑟𝐽 by𝑁2𝐻−2, it yields

var (𝐶 𝑛,𝑖
𝑋,𝑡
) = var (𝐶𝑛,𝑗

𝑋,𝑡
) . (46)

Expression (46) implies that the estimation of the vari-
ance of components is unbiased (a desirable property) and,
as a consequence, so it is the estimation of the statistic 𝑆

2
(𝑗).

Another implication of (46) is that the estimations of the
Hurst index and the power parameter 𝑐

𝑓
𝐶 from the Logscale

Diagram are unbiased, as have previously been proven by the
authors of [11].

4.5. Correlation of the Wavelet Coefficients. Let us describe
the autocovariance of the Haar wavelet coefficients, that is,
the case for 𝑛 = 2.The structure of this 𝑗th component (𝐶2,𝑗

𝑋,𝑡
),

as a function of the elements of𝑋
𝑡
, is

𝐶
2,𝑗

𝑋,𝜏
=
𝑥
(2
𝑗−1
)

2𝜏−1
− 𝑥
(2
𝑗−1
)

2𝜏

2
. (47)

Note that 𝐶2,𝑗
𝑋,𝜏

is a downsampled version of 𝐶2,𝑗
𝑋,𝑡
, that is, only

the first observation of each 2𝑗 of 𝐶2,𝑗
𝑋,𝑡

remains.
Then, two consecutive coefficients are correlated as

𝛾
𝐶𝐽
(𝑘) = 𝐸 (𝐶

2,𝑗

𝑋,𝜏
, 𝐶
2,𝑗

𝑋,𝜏+𝑘
)

= 𝐸(
𝑥
(2
𝑗−1
)

2𝜏−1
− 𝑥
(2
𝑗−1
)

2𝜏

2

𝑥
(2
𝑗−1
)

2(𝜏+𝑘)−1
− 𝑥
(2
𝑗−1
)

2(𝜏+𝑘)

2
) .

(48)

Assuming that 𝑋
𝑡
represents a zero-mean 𝐻-SOSS pro-

cess, and according to the definition (8), 𝐸(𝑥(2
𝑗−1
)

2𝜏−1
𝑥
(2
𝑗−1
)

2(𝜏+𝑘)−1
) =

𝐸(𝑥
(2
𝑗−1
)

2𝜏
𝑥
(2
𝑗−1
)

2(𝜏+𝑘)
) = 𝛾
𝑋
(2𝑘), 𝐸(𝑥(2

𝑗−1
)

2𝜏−1
𝑥
(2
𝑗−1
)

2(𝜏+𝑘)
) = 𝛾
𝑋
(2𝑘 + 1) and

𝐸(𝑥
(2
𝑗−1
)

2𝜏
𝑥
(2
𝑗−1
)

2(𝜏+𝑘)−1
) = 𝛾
𝑋
(2𝑘 − 1). Then, (48) is calculated as

𝛾
𝐶𝑗
(𝑘) =

2
2𝐻−2

𝜎
2

𝑋

4
[2𝜌
𝑋
(2𝑘) − 𝜌

𝑋
(2𝑘 + 1) − 𝜌

𝑋
(2𝑘 − 1)] ,

(49)

and the correlation coefficient of the 𝑗th component is then

𝜌
𝐶𝑗
(𝑘) = 𝜌

𝐶
(𝑘) =

[𝜌
𝑋
(2𝑘 + 1) − 2𝜌

𝑋
(2𝑘) + 𝜌

𝑋
(2𝑘 − 1)]

22𝐻 − 4
.

(50)

As (50) shows, the correlation structure is the same for
all components, that is, 𝜌

𝐶𝑗
(𝑘) is independent of 𝑗. Other

implications of (50) are that
∞

∑

𝑘=0

𝜌
𝐶𝑗
(𝑘)

= 1 +

−𝜌
𝑋
(1) − 𝜌

𝑋
(2𝑘 + 1) + 2∑

2𝐾+1

𝑖=1
[(−1)
𝑖−1
𝜌
𝑋
(𝑖)]

22𝐻 − 4
,

(51)

which can be approximated as
∞

∑

𝑘=0

𝜌
𝐶𝑗
(𝑘) ≈ −0.052𝐻

2
− 0.311𝐻 + 1.168 < ∞, (52)
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Figure 7: Correlation coefficient of the Haar wavelet components.
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that is, the coefficients are weakly correlated and the sum of
correlations is finite [33]; furthermore, none of the compo-
nents (sequences of wavelet coefficient) can be a self-similar
time series except for 𝐻 = 0.5, for example, components
of a white noise process are also white noise processes.
A plot of 𝜌

𝐶𝑗
(𝑘) versus 𝑘 is shown in Figure 7 for 𝐻 =

{0.1, 0.3, 0.5, 0.7, 0.9}.The sum∑
∞

𝑘=0
𝜌
𝐶𝑗
(𝑘) versus𝐻 is shown

in Figure 8.
As the maximummagnitude of 𝛾

𝐶1
(1) is 1/8 (when𝐻 →

0), it is said that these coefficients are quasiuncorrelated. Note
that 𝛾
𝐶1
(1) = 0 for𝐻 = 0.5 and𝐻 → 1.

Although the assumption that the estimation of the
1st component variance (var(𝐶 𝑛,1

𝑋,𝑡
)) is unbiased is nearly

accurate, it may not hold for components of greater order. As
the wavelet coefficients 𝑑

𝑋
(𝑗, 𝑘) are almost uncorrelated, the

estimation of the component variance (i.e., ∑𝑁/𝑛
𝑖

𝑡=1
(𝐶
𝑛,𝑖

𝑋,𝑡
)
2) is

approximately ((𝑁 − 𝑛
𝑖
)/𝑁)var(𝐶𝑛,𝑖

𝑋,𝑡
).

5. Variance Plot-Based Estimation of
the Hurst Index

As described in Section 2.3, the Variance Plot is a straight
line for self-similar time series but, as many authors have
claimed, it underestimates the Hurst index when working
with real world data. This is a consequence of the inadequate
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estimation of the aggregated variance, caused by the appli-
cation of the classical formula (36) regardless of whether the
original process presents any type of correlation.The solution
would be then to apply the unbiased formula (42), but it
leads to an ill-conditioned problem: the Hurst index needs
to be estimated and known at the same time. Then, it is not
that the Variance Plot is not adequate to estimate the Hurst
index, rather the flaw of those implementations is that the
aggregated variance is underestimated.

Nevertheless, it is actually possible to estimate the Hurst
index analytically from theVariance Plot: the key is to choose
the aggregation levels so that they form a geometric series, as
explained in Section 5.1. Note that a numerical method can
also be applied to estimate simultaneously the Variance Plot
and the Hurst index, but the proposed solution is compu-
tationally simpler and more efficient.

5.1. Analytical Solution to the Ill-Conditioned Problem. Let
{𝑚
𝑖
; 𝑖 = 1, . . . ,𝑀} be the set of aggregation levels such that

𝑚
𝑖
= 𝑎𝑚
𝑖−1

= 𝑎
𝑖−1
𝑚
1
, 𝑎,𝑚
1
∈ N and 𝑎 > 1, that is, the levels

of aggregation follow a geometric series, for example, {𝑚
𝑖
} =

{2, 4, 8, . . . , 2
𝑀
} or {𝑚

𝑖
} = {10, 100, 1000, . . . , 10

𝑀
}, and let

�̂�
2

𝑋
(𝑚𝑖)

be the variance of the aggregated series𝑋(𝑚𝑖)
𝑘

estimated
with formula (35). Obviously, �̂�2

𝑋
(𝑚𝑖)

is biased, as �̂�2
𝑋
(𝑚𝑖)

=

𝜎
2

𝑋
(𝑚𝑖)
[1 − (𝑁/𝑚

𝑖
)
2𝐻−2

] = 𝜎
2

𝑋
𝑚
2𝐻−2

𝑖
(1 − 𝑁

2𝐻−2
), but then

the difference between �̂�2
𝑋
(𝑚𝑖)

and �̂�2
𝑋
(𝑚𝑖+1)

is calculated as fol-
lows:

Δ̂
𝑖
= �̂�
2

𝑋
(𝑚𝑖) − �̂�

2

𝑋
(𝑚𝑖+1) = 𝜎

2

𝑋
𝑚
2𝐻−2

1
𝑎
(𝑖−1)(2𝐻−2)

(1 − 𝑎
2𝐻−2

) ,

𝑖 = 1, . . . ,𝑀 − 1,

(53)

and its logarithm

log
𝑎
Δ
𝑖
= log
𝑎
[𝜎
2

𝑋
𝑚
2𝐻−2

1
(1 − 𝑎

2𝐻−2
)] + (𝑖 − 1) (2𝐻 − 2) .

(54)

Finally, the slope (𝑠) of the plot log
𝑎
Δ
𝑖
versus 𝑖 is obtained

(e.g., with a weighted least square regression) and 𝐻 is
estimated as �̂� = 𝑠/2 + 1. It can be easily proven as �̂�2

𝑋
(𝑚𝑖)

=

𝑋
(𝑛
𝑗−1
𝐸)

𝑡
and substituting it in (16) and (19).

The slope is computed by the followingweighted formula:

𝑠 =

∑
𝑀−1

𝑖=1
(𝑖Δ̂
𝑖
𝑊
𝑖
) − ∑
𝑀−1

𝑖=1
(𝑖𝑊
𝑖
) ⋅ ∑
𝑀−1

𝑖=1
(Δ̂
𝑖
𝑊
𝑖
)

∑
𝑀−1

𝑖=1
(𝑖2𝑊
𝑖
) − [∑

𝑀−1

𝑖=1
(𝑖𝑊
𝑖
)]
2

, (55)

where the weights are such that ∑𝑀−1
𝑖=1

(𝑊
𝑖
) = 1 and they are

adequate so that 𝑠 has minimal variance, for example, 𝑊
𝑖
=

𝑊
𝑖−1
/𝑚
1
.

Note that theVariance Plot can be estimated without bias,
but the Hurt index is not estimated from it. Furthermore, if
the aggregation levels are taken as 𝑚

𝑖
= 2
𝑖, the estimator is

exactly the same than the one that uses Haar wavelet. The
authors of [34] developed an empirical study of estimation
of the Hurst index from series with the presence of trends.
They conclude that a method named differenced-variance (a

variation of the variance-bases estimator) should not be used
for estimating the Hurst index. The proposed solution is also
a differenced-variance typemethod, but it can be used to esti-
mate the Hurst index without bias and with optimal variance.
Evidently, when working with real world traces, the Variance
Plot may differ from the straight line, and an additional bias
results from the logarithm as 𝐸[log(⋅)] ̸= log[𝐸(⋅)]. This bias
can be subtracted analogously to (15), that is,

log
𝑎
var [𝑋(𝑚𝑖)

𝑡
] = log

𝑎
var [𝑋(𝑚𝑖)

𝑡
] − 𝑔
𝑖
, (56)

where 𝑔
𝑖
is the bias defined in(14).

6. Simulation and Measurements

6.1. Estimation of the Sample Mean. In order to verify the
equations that describe the mean and variance of the sample
mean, a set of zero-mean, unitary variance, and FGN time
series of size 𝑁

𝑝
= 10
6 observations are generated using

an implementation of the generator proposed by Davies and
Harte in [35], each for a different Hurst index for𝐻 = {0.30,

0.50, 0.70, 0.90}. Then, the mean is estimated from blocks of
size 𝑁 = 100 and the empirical PDF is obtained from the
estimations and compared to the classical (34) and proposed
(33) estimators. Figure 9(a) shows that the variance of the
estimated mean does not fit the classical model when SRD or
LRD is present (Figures 9(a), 9(c), and 9(d)), but only for the
uncorrelated case (Figure 9(b)). Only proposed estimator (33)
represents adequately this phenomenon for the four cases.

6.2. Estimation of the Sample Variance. The followed proce-
dure to verify the proposed estimator of the sample variance
(�̂�2
𝑋
) consists of the generation of a set of 100 FGN samples

of size 1024 for each value of 𝐻 = {0.05, 0.10, 0.15, . . . , 0.95}

and the estimation of the variance using the classical formula
(36) and the proposed estimator (40). The respective mean
of both estimations for each set was obtained. For the esti-
mation of the Hurst index the wavelet estimator of Veitch and
Abry [11] is used.

Figure 10 shows that the classical formula underestimates
the variance noticeably for higher values of 𝐻. For 𝐻 >

0.95 the estimated variance is less than half of the process
variance. The proposed formula (40) does not underestimate
the variance, but for high values of𝐻 the estimated variance
is significantly different from one realization to another. This
variation results from the estimation of the Hurst index, as
the statistic 1 − 𝑁

2�̂�−2 is very sensitive to the variations of
�̂�, which depends, in turn, on the efficiency of the sample
generator.This is an indicator that the generator proposed by
Davies and Harte may be less accurate as𝐻 is closer to 1.

Figure 11 shows the variance of the estimated variance
obtained with the proposed formula (40) compared to the
approximation proposed by Yunhua in [31], as expected, the
variance of the estimation is close to zero (lower than 0.001)
for 𝐻 < 0.5, but as the Hurst index increases, it becomes
noticeable when 𝐻 > 0.75. This verifies the observation of
[31], which says that beyond 𝐻 = 0.75 the precision of the
autocorrelation is about one order lower thanwhen𝐻 < 0.75.



Mathematical Problems in Engineering 11

0

3

6

9

12

−0.12 −0.08 −0.04 0 0.04 0.08 0.12

f
X
(x
)

x

(a)

0
1
2
3
4
5

−0.3 −0.15 0 0.15 0.3

f
X
(x
)

x

(b)

Data
Classical
Proposed

0

1

2

3

4

−0.75 −0.5 −0.25 0 0.25 0.5 0.75

f
X
(x
)

x

(c)

Data
Classical
Proposed

f
X
(x
)

x

0
1
2
3
4
5

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

(d)

Figure 9: Estimation of the sample mean with 𝑛 = 100 for four cases: (a)𝐻 = 0.30, (b)𝐻 = 0.50, (c)𝐻 = 0.70, and (d)𝐻 = 0.90.
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6.3. Synthesis of 𝐻-SOSS Time Series. To exemplify the
proposed wavelet-based synthesis (described in Section 3.2),
four time series with respective Hurst index 0.3, 0.5, 0.7, and
0.9 were synthesized from an FGN sample of size 1024. The
Logscale Diagram of the four new time series were obtained
and compared to that of the original sample. The plot 𝑋

𝑡

versus 𝑡 for each one; the four synthesized series is shown
in Figure 12. One can visually check the presence of positive
correlation in Figures 12(c) and 12(d).

The Logscale Diagram of these artificial series is shown
in Figure 13. Note that the original Logscale Diagram of the
source sample is not a straight line, but it so is for the
synthesized series. Also, the estimated Hurst index of this
series is �̂� = 0.56 and its estimated Logscale Diagram is
not a straight line, but the estimated Hurst index of the four
generated series is exactly the desired, for example, �̂� = 0.30
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Figure 11: Variance of the estimated variance for 𝑛 = 1024 and𝐻 =

{0.05, 0.10, 0.15, . . . , 0.95}.

for the series shown in Figure 12(a) and the same for the
others, and their respectiveLogscaleDiagram is a straight line.

6.4. Voice over IP (VoIP) Measurements. The jitter behavior
of Voice over Internet Protocol (VoIP) traffic by means
of networks measurements is analyzed. As result of this
analysis, detailed characterization and accurate modeling of
this Quality of Service (QoS) parameter is provided. Previous
studies have revealed that VoIP jitter can be modeled by
self-similar processes with short-range dependence (SRD) or
long-range dependence (LRD) [36]. The discovery of LRD (a
kind of asymptotic fractal scaling) and weak self-similarity in
the VoIP jitter data traces was followed by a further work that
shows the evidence formultifractal behavior.Thediscovery of
evidence for multifractal behavior is a richer form of scaling
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Figure 12: Plot versus time of the four synthesized time series. (a)𝐻 = 0.30, (b)𝐻 = 0.50, (c)𝐻 = 0.70, and (d)𝐻 = 0.90.

H ≈ 0.5
H = 0.3

H = 0.5

H = 0.7

H = 0.9

−4

−2

0
2
4
6
8

0 2 4 6 8 10
j

lo
g 2

[S
2
(j
)]

Figure 13: Logscale Diagram of synthesized time series.

behavior associated with nonuniform local variability, which
could lead to a complete and robust model of IP network
traffic over all time scales.

Motivated by such concerns, the evidence formultifractal
behavior of VoIP jitter data traces is reviewed. In order to
accomplish this analysis, the time series of VoIP jitter into
a set of time series or components 𝐶2,𝑗

𝑋,𝜏
is decomposed as

defined by (16). The behavior of these components is used
to determine the kind of asymptotic fractal scaling. If the
variance of the components of a time series is modeled by
a straight line, the time series exhibits monofractal behavior,
and a linear regression can be applied in order to estimate
the Hurst parameter. On the other hand, if the variance of
the components cannot be adequately modeled with a linear
model, then the scaling behavior should be described with
more than one scaling parameter, that is, the time series
exhibits multifractal behavior [23]. In Figures 14 and 15, we
show the components behavior of the collected VoIP jitter
data traces.
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Figure 14: Components behavior of VoIP jitter data traces:
monofractal behavior.

Figure 14 shows the components behaviors of a VoIP jitter
data trace that belongs to the data sets with SRD. It is observed
that the variance of the components of this time series is
modeled by a straight line; therefore, the time series exhibits
monofractal behavior.

Figure 15 shows the components behaviors of a VoIP jitter
data trace that belongs to the data setswith LRD. It is observed
that the variance of the components of this time series
cannot be adequately modeled with a linear model, and the
scaling behavior should be described with multiple scaling
parameters (biscaling); therefore, this time series exhibits
multifractal behavior.
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Figure 15: Components behavior of VoIP jitter data traces: multi-
fractal behavior.

These results show that VoIP jitter with SRD or LRD
exhibit monofractal or multifractal behavior, respectively.
This phenomenon explains the behavior of the data traces
with SRDandhigh degree of self-similarity (scale invariance),
because the self-similarity is defined for a single scale parame-
ter. On the other hand, the data traces with LRD exhibit weak
self-similarity because they have associated nonuniform local
variability (multifractal behavior).

The implication of this behavior for VoIP and other
interactive multimedia services is that receiver dejitter buffer
may not be large enough to mask the jitter with LRD and
multifractal characteristics.

7. Conclusion

An orthogonal decomposition, that constitutes a powerful
statistic tool to study discrete time series, is presented.
The resulting components (𝐶𝑛,𝑗

𝑋,𝑡
) have zero-mean and three

desirably properties: (1) they synthesize the source signal
without loss, (2) they are pair wise orthogonal, and (3) their
variances form a geometric series whose rate is related to the
Hurst index.

This decomposition is firstly compared to Haar wavelet
based. For a particular case these two coincide, but the
proposed one is more general, as other levels of aggregation
may occur. In this case, the Haar wavelet is not sufficient and
a special class of basis functions are defined, and the wavelet
coefficients are obtained by the inner products between the
signal under study and a scaled, displaced, and phase shifted
versions of the basis function, in contradistinction of other
wavelet decomposition, that only apply scaling and displace-
ment. For a fixed scaling and displacement, the last phase shift
can be discarded (i.e., the components are downsampled) as
it does not provide additional information.

The proposed decomposition can be used to estimate
the Hurst index, as the plot 𝑗 + log

𝑛
[var(𝐶𝑛,𝑗

𝑋,𝑡
)] versus 𝑗 is

equivalent to the Logscale Diagram proposed by Veitch and
Abry in [11]. It is a straight line for 𝐻-SOSS time series, and
the slope is related to the Hurst index so that 𝑠 = 2𝐻 − 1.

The components can be also used to synthesize 𝐻-SOSS
time series by means of the weighted sum defined by (31) and
(32), regardless of the distribution of the source signal and
whether it is or not self-similar. The synthesis is exact, that is,
theHurst index of the synthesized series is exactly the desired,
which is an advantage over the proposed synthesis, that uses
IMF from an EMD decomposition, described in [27].

A study of the estimated mean and variance of self-simi-
lar time series is also presented. Both statistics, mean and
variance, can be estimated without bias, by applying the clas-
sic sample mean (𝑋 = 1/𝑁∑

𝑁

𝑡=1
𝑋
𝑡
) and the proposed vari-

ance estimator (40).The variance of these estimators depends
on the Hurst index of the process. In the case of the sample
mean, its variance is an increasing function of𝐻, as expressed
by (33), such that var(𝑋) ∈ (𝜎

2

𝑋
𝑁
−2
, 𝜎
2

𝑋
). Note that the

sample mean becomes less significant as 𝐻 approaches to 1.
For the variance of �̂�2

𝑋
, it can be observed that it has the best

performance when𝐻 = 0.5 (the variance of �̂�2
𝑋
is minimal).

For 𝐻 < 0.5, the variance increases as 𝐻 is lower, but it is
still acceptable (e.g., var(�̂�2

𝑋
) < 0.001𝜎

2

𝑋
when 𝐻 → 0. But

when𝐻 gets close to 1, the uncertainty of the sample variance
increases rapidly,making the estimation of𝜎2

𝑋
less significant.

It is demonstrated also (clarifying a popular misunder-
standing) that the Variance Plot can be used to estimate
efficiently the Hurst index. The claims of many researchers
about the inefficiency of the Variance Plot are the result of
an ill-conditioned problem: to estimate the Hurst index the
variance of the aggregated series is needed and vice versa,
leading to a vicious circle. It is shown how this problem is
avoided by estimating the Variance Plot using a set of aggre-
gation levels that follow a geometric series and calculating
the differences between the variances of the corresponding
aggregated series; then, aweighted linear regression is applied
to estimate the slope (𝑠), and the estimated Hurst index is
�̂� = 𝑠/2 + 1. This result gives more significance to the results
published by Abry et al. in [26].
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