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Abstract: People tracking is an interesting topic in computer vision. It has applications in industrial areas
such as surveillance or human-machine interaction. Particle Filters is a common algorithm for people
tracking; challenging situations occur when the target’s motion is poorly modelled or with unexpected
motions. In this paper, an alternative to address people tracking is presented. The proposed algorithm is
based in particle filters, but instead of using a dynamical model, it uses background subtraction to predict
future locations of particles. The algorithm is able to track people in omnidirectional sequences with a
low frame rate (one or two frames per second). Our approach can tackle unexpected discontinuities and
changes in the direction of the motion. The main goal of the paper is to track people from laboratories,
but it has applications in surveillance, mainly in controlled environments.
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INTRODUCTION

Omnidirectional Vision Systems are the topic of many re-
search activities in recent years. The original idea for om-
nidirectional vision systems is to use cameras and mirrors
to increase the field of view, as proposed by Rees (1970).
Geyer and Daniilidis (2001) proposed a unified model for
this kind of vision system.

People tracking is a major topic in computer vision.
People tracking has applications in visual surveillance,
human-computer interaction, etc. Major problems of peo-
ple tracking are illumination changes, occlusions and un-
expected motions of the subject. Particle Filters (PF) is a
commonly used technique in people tracking. Tradition-
ally, PF use system transitions to model the motion of the
target. These transitions add flexibility in comparison to
the Kalman filter. Despite there being lots of particle filter
applications that succeed tracking targets, the modelling
of dynamics represents a great challenge. Particularly, in
people tracking with low frame-rate sequences, it is very
difficult to model significant random jumps of subjects.

Particle filters had been widely used in very different ar-
eas like robotics, see a survey on this topic by Thrun (2002),
and tracking. Arulampalam et al. (2002) made a survey on
nonlinear/non-Gaussian tracking problems. They present
several variants of the particle filter such as SIR, ASIR and
RPF, comparing them to the standard EKF. Particle filters
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are particularly useful for visual tracking (Nummiaro et al.
2003, Pérez et al. 2002). Pérez et al. (2002) use a colour-
based probabilistic tracking. They compare the colour
content of candidate regions to a reference region, which
is done with a colour likelihood based on colour histogram
distances and the posterior with a Monte Carlo approxima-
tion. Nummiaro et al. (2003) proposed the use of particle
filter with colour-based image features, specifically colour
histograms. Their tracker takes advantage of the particle
filter evaluating the image content only at the sample
positions. They model the targets as ellipses and also
compute the histograms assigning higher importance to
those pixels that are close to the centre. Auxiliary Particle
Filters (APF) were proposed by Pitt and Shephard (1999).
APF generates particles from an importance density that
depends on the most recent observations. It samples
the posterior using the same importance density. Since
APF relies on the most recent observations, it results on
better priors and hence a better sampling of the posterior.
Deutscher et al. (2000) introduce the concept of Annealed
Particle Filter and this modified filter is an adaptation of
simulated annealing to the particle filter. It uses different
weighting functions at each step of the annealed process.

Background subtraction had been extensively studied
in the computer vision community. Elgammal et al. (2002)
use pixel intensity or colour to model the background.
Their model keeps a sample of the intensity values for
each pixel in the image and uses this sample to estimate
the density function of the pixel intensity distribution.
Haritaoglu et al. (2000) model the background variation
with a bimodal distribution constructed from order
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statistics of background values during a training period.
Most algorithms for background subtraction are affected
by illumination changes, and also must adapt to changes,
like placing objects (should be part of the background).

Other works that use background subtraction as a step
for tracking are those by McKenna et al. (2000) and
Senior (2002). McKenna et al. (2000) track groups of peo-
ple using background subtraction to get foreground re-
gions. They classify these regions as regions, people or
groups. They did not need to predict the motion of regions
because they used sequences where the visual motion of
regions were always small relative to their spatial extents.
Senior (2002) presents a tracking algorithm which uses
background subtraction and a so called high-level track-
ing. He first relates the tracks with the foreground regions
and then applies a series of rules to solve ambiguities.

This paper presents a tracking algorithm for motion pat-
terns that are hard to capture in dynamical models. The
algorithm works with omnidirectional sequences, recorded
in a laboratory, hence it does not compensate for illumina-
tion changes. Due to other requirements, sequences have
low frame rate i.e., 1 or 2 fps. Consequently, targets can
change size, orientation and location very abruptly and fol-
low unpredicted trajectories. The targets are modelled as
ellipses; using its covariance matrix, we take into account
size and orientation changes. The likelihood is based on
normalised colour histogram distances, because it is in-
variant to rotations and scales. The tracking is inspired
on the particle filter, but the dynamical model is replaced
with a background subtraction step and association of re-
gions with tracks. Our algorithm is able to track people
in omnidirectional sequences with low frame rates, where
subjects move significantly and randomly between consec-
utive frames.

The paper is organised as follows: the second section
gives a brief introduction to particle filters, the third sec-
tion presents the colour model, the fourth section shows
the background subtraction, and the fifth section depicts
the modified version of particle filter. In the sixth section,
experiments are shown. Finally the seventh section is de-
voted to conclusions.

PARTICLE FILTERING

The particle filter evolved from the work by Isard and
Blake, CONDENSATION (1998). It was developed to
track objects in clutter. The particle filter requires the
definition of two elements: a data likelihood term and a
dynamical model. The first one evaluates the likelihood of
the current observation given in the current object state.
The dynamical model takes information about the prior on
the state sequence and helps to predict the new state.

Assume that the state of the tracked object at time t is
denoted by xt , its history is Xt = {x1, . . . , xt}. The vector
Zt = {z1, . . . , zt} denotes all the observations zi up to time
t. In the particular case of tracking, zt represents a set of

Figure 1 Illustration of the Particle Filter. The black points
represent the weighted particle, the search is misled by local
maximum.

image features at time t. The goal is to approximate the pos-
terior p(xt |Zt ) of the probability distribution. The key idea
in the particle filtering is to approximate the probability dis-
tribution (and consequently the posterior) by a weighted
finite set of samples, the particles. Denote a weighted set
of N different samples as S = {(s (n)

t , π
(n)
t )|n = 1, . . . , N}.

Each of these samples s (i ) represents a possible object state,
with an associated weight π (i ). The likelihood of being the
true location of the target for a particular sample (state)
is represented by its weight. The weights are normalised
such that

∑N
i=1 π (n) = 1.

The posterior p(xt |Zt ) can be expressed recursively ap-
plying Bayes law as,

p(xt |Zt ) = kt p(zt |xt )p(xt |Zt−1). (1)

The distribution p(xt |Zt−1) is obtained from the posterior
p(xt−1|Zt−1) at previous time t − 1 by marginalising over
xt−1,

p(xt |Zt−1) =
∫

xt−1

p(xt , xt−1|Zt−1)

=
∫

xt−1

p(xt |xt−1)p(xt−1|Zt−1), (2)

where the chain rule was applied and p(xt |xt−1) is the
dynamical model.

The evolution of the sample set is obtained as follows.
All the particles are moved independently according to a
system transition (dynamical) model. Then all the samples
are weighted using a measurement density p(zt |xt ), such
that π

(n)
t = p(zt |xt = s (n)). The mean state is estimated at

each time by E[S] = ∑N
n=1 π (n)s (n).

The PF reduce the computational cost by searching
only those regions where the object is predicted to be by
the model and samples. They are robust trackers because
they model the uncertainty. See Figure 1.

The annealed particle filter approach uses a series of
weighting functions w0(X) to wM(X), each wm differs only
slightly from wm−1. The function wm must be broader
than wm−1, because it must search a larger region. The
i -th annealing run is performed with the predictions made
by the previous run and using the function wi to assign
weights to the particles. See Figure 2.
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Figure 2 Illustration of the Annealed Particle Filter. The
black points represent the weighted particle, through the
layered search the particle set gets closer to the global
maximum.

COLOUR MODEL

The tracking algorithm was designed to work in a colour
context. There are a lot of different colour space models like
the RGB (red, green, blue), the CMYK (Cyan, Magenta,
Yellow, blacK), HSV (Hue, Saturation, Value), etc. The
HSV model is used in the algorithm because it is less
sensitive to light changes. However, the colour is only
reliable when the saturation and value (brightness) are not
too small.

We use colour distributions to model the information
since they provide robustness against rotations, scales and
partial occlusions. The distributions are discretised (N
bins) and normalised. The target regions have histograms
(discrete colour distributions) with N bins. In the follow-
ing, Nh , Ns and Nv will represent the number of bins
used for hue, saturation and value respectively. The his-
tograms used are squared for the hue and saturation larger

Figure 3 One image and its respective HSV histogram. The histogram has 100 bins for hue x saturation and 10 bins for value.

than two thresholds set to 0.1 and 0.2 respectively, with
Nh Ns bins. This histogram provides information about the
colour of the target, but allows black and white being con-
sidered the same. Hence, the value information from the
remaining pixels is also necessary, but with less sensitiv-
ity. It results in the use of histograms of N =Nh Ns + Nv

bins. For our experiments we use Nh = Ns = Nv = 10,
the resulting histograms have N = 10 × 10 + 10 = 110
bins. An example of the resulting histogram is presented
in Figure 3.

There are some common distance measures for his-
tograms like the intersection of histograms. As with Pérez
et al. (2002) and Nummiaro et al. (2003), we use the Bhat-
tacharyya similarity coefficient to compute the distance
between histograms. This distance is used to favour colour
histograms that are closer to the reference histogram. It is
defined as follows:

ρ(p, q ) =
N∑

i=1

√
p(i )q (i ) (3)

d (p, q ) =
√

1 − ρ(p, q ), (4)

where p, q are two histograms, p(i ) and q (i ) represent
the i -th bin of the respective histogram and d (p, q ) is the
distance between the histograms p and q .

BACKGROUND SUBTRACTION

Next, the background subtraction algorithm will be
explained. The background model is computed with an
algorithm similar to that by Haritaoglu et al. (2000).
Haritaoglu et al. (2000) modelled the variation of the back-
ground with a bimodal distribution build with order statis-
tics of the pixel values over a training period. The back-
ground model represents each pixel with three values:
minimum, maximum and the greater difference between
consecutive frames over the training period. The model
updated following certain rules. When a certain amount of
time elapses, the model is updated completely. Each pixel
is classified as background or foreground using the previ-
ous values. Given the minimum (M), maximum (N) and
the greater differences between frames (D), the pixels x of
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Figure 4 Graphic of the pixel selection as background or
foreground. Pixels between (M-D) and (N+D) are
considered as background.

an image I will be foreground if:

|M(x) − I(x)| > D(x) or |N(x) − I(x)| > D(x) (5)

However, in order to increase the speed and reduce the
memory space our algorithm does not keep a difference for
each pixel, but uses a global one. Another difference is that
our model is updated dynamically and independently for
each pixel, which is updated depending on the number of
times it keeps in range from the current value. Figure 4
graphically presents (5).

Figure 5 shows the background model. It is worth men-
tioning that the background model is computed in the grey
scale colour model. Nevertheless, the tracking uses full
colour information in the HSV colour model. The train-
ing period considered is 27, but it can be 81 images. For
every new frame, after getting foreground regions, a mor-
phological closing is made and small regions are discarded
considering them as false positives.

TRACKING ALGORITHM

Before completely getting into the algorithm details, it is
necessary to explain the modification to the particle filter.
The used sequences have a low frame rate, and as a conse-
quence the targets can move significantly between frames.
Also, the targets can have unexpected motions. This re-
sults in a poor dynamical model for the particle filter. We
propose the use of background subtraction techniques to
get the predicted location of tracked regions for the filter.
That is, the foreground regions not only represent regions

Figure 5 Background model. a) Original Image. b) Computed background.

Figure 6 The region A and B are associated because their
distance is lower than the threshold, but A and C are not
associated because their distance is greater than the
threshold.

that are moving but possibly targets that are being tracked
as well. We use a rule that associates the foreground regions
with the regions being tracked. This association rule says:

‘If the distance between the centre of the tracked
region and the perimeter of the foreground re-
gions is less than a given threshold then the re-
gions are associated and vice versa.’

This association rule is described as

A ◦ B ←
{

true if dist(A,B) ≤ Th
false if dist(A,B) > Th , (6)

where ◦ stands for association, dist(A, B) stands for the
distance in pixels from the centre of region A to the nearest
point of region B and Th is a threshold for such association.
The threshold for the experiments is set to the height or
width of the target region. The safest case is to set the
threshold so the search region is the whole image. In the
latter, the annealed approach will increase not only the
processing time but also the possibility to track the region
correctly.

This way, the locations where the tracked region is more
likely to be can be obtained without the need of dynamical
models. This rule is graphically presented in Figure 6.
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The regions are modelled as ellipses using its covariance.
By using the covariance matrix, we are able to change the
orientation and scale of the ellipses. Before the samples
(ellipses) are weighted, we rotate and scale the covariance
matrix. Then we compute the correspondent histograms
and weights for the transformed regions. One property
of the covariance matrix is that it can be multiplied by a
rotation matrix to get the effect as if the data were rotated
and also it can be scaled in the same way. This property is
written as follows:

cov(RX, RX) = Rcov(X, X)RT . (7)

That is, computing the covariance matrix of points X
rotated with a matrix R as cov(RX, RX) is the same as
rotating the covariance matrix, Rcov(X, X)RT . This also
applies to scaled points, cov(SX, SX) = Scov(X, X)ST .
Using this property, the algorithm modifies the regions
(samples) not only in their location but also in orientation
and scale. The algorithm needs to select the pixels that are
part of the region. Recalling that regions are ellipses, the
covariance matrix is used to discern which pixels belong to
the region. A region R with covariance C is then computed
as a set of pixels x,

R = {pixel x | CxC T < γ }, (8)

where γ is a threshold to control the size of the region.
It is set to a value of 0.85, with it the size of the ellipse
and bounding box of the foreground region are almost the
same.

To assign weights to each sample region, the Bhat-
tacharyya coefficient is computed between the histogram
of each sample and the histogram of the reference region
using equation (4); this last histogram will be called a target
histogram. As it was noted, the algorithm favours colour
histograms that are close to the target histogram, hence
it gives more weight to those histograms with small Bhat-
tacharyya distance. The weights are assigned using a Gaus-
sian function as follows:

π (n) = 1√
2πσ

e− d (p(n),q )2n
2σ2 = 1√

2πσ
e− (1−ρ[p(n),q ]

2σ2 (9)

where d (p (n), q )2
n = [1 − ρ(p (n), q )] is the distance

corresponding to the n-th particle p (n) and the target his-
togram q .

The tracking is initialised with the background subtrac-
tion, taking the foreground regions as the targets to track.
The background model is computed with the algorithm
depicted in the fourth section. Ellipses are used to model
these regions with their covariance matrix. Note that using
these matrices, the algorithm does not force the ellipses to
be vertical or horizontal as most algorithms do.

At each iteration of the algorithm, a new frame from
the sequence is used; then the foreground regions are ex-
tracted using a background model previously computed.

The foreground regions are associated with the current
tracks using the association rule previously stated. All the
foreground regions associated to the same track are fused
and their centroid is considered as the predicted location
for the track. In case no regions are associated, the sam-
ples will be drawn frm the whole image. From here, given
the locations, the algorithm is able to draw samples about
them, which are ellipses, maybe with different rotation and
scale than the original one. Together, all previous steps are
similar to propagate the sample set with the dynamical
model.

Starting at this point, the algorithm follows the same
steps as if it is an annealed particle filter. We already have
an initial sample set. Compute the histogram of the target
region. Next, compute the Bhattacharyya coefficient for
each (modified) sample using equation (4). Assign weights
to each sample with equation (9). Select only the n particles
with greater weights, and for the k−th annealed run, draw
particles around the centroid of the previously selected
particles, again weight each particle according to equation
(9) and select those particles with greater weights. After
the end of the last annealed run, compute the predicted
region as the expected value of the particles:

E[S] =
N∑

n=1

π (n)s (n). (10)

The complete algorithm is presented in Figure 7.

EXPERIMENTS AND RESULTS

The authors present the experiments with an omnidi-
rectional sequence. Also, the results of the proposed al-
gorithm are compared with a standard particle filter.

Figure 7 The tracking algorithm. It uses an annealed particle
filter approach and background subtraction step.
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Figure 8 Target region (ellipse). a) Original Image b) Foreground region. c) Overlapped region and ellipse.

Figure 9 Comparison. a) Classical particle filter. b) Proposed algorithm. Note that the classical algorithm quickly loses the
region.
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Figure 10 Complete Sequence. Frame 1, 7, 10, 14, 17, 20, 23, 26 and 29.

Figure 11 Second sequence of images. a) Original (first) image. b) Computed background. c) Foreground region and
corresponding ellipse.

Omnidirectional sequences are selected because they do
not fulfil the spatial assumptions regarding vertical and
horizontal projections made in some papers (McKenna
et al. 2000). Also they provide a larger field of view than
projective cameras, but loses some resolution. Note that the
frames suffer high order distortions due to the mirror re-
flection. For additional information about omnidirectional
vision systems the readers can see the work by Geyer and
Daniilidis (2001).

The sequence used have a low frame rate, only 2 frames
per second. The sequence was grabbed in a laboratory with
the camera placed in the centre of the room. As the reader
can see, the target rotate almost 120 degrees about the
centre of the camera. The region to track is presented in
Figure 8. Figure 8 presents the foreground region used to
compute the target ellipse and corresponding histogram.

The comparison with a standard particle filter is pre-
sented in Figure 9. In this figure are shown the frames 1, 5,
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Figure 12 Complete sequence. Frame 1, 3, 4, 6, 11 and 14.

7 and 12, as the reader can see the standard algorithm fails
by frame 5, where the move of the target is significantly
greater than the movement in previous frames. Note that
dynamical models can hardly follow erratic trajectories of
targets. Moreover the region does not rotate or scale hence
it is more difficult to find the correct region. As a result
the weight of the proposed region decreases rapidly. Our
approach is certainly more robust, because it relays on the
likelihood of the current observations given the current
object state. It does not take into account any dynami-
cal model whatsoever, using instead foreground regions to
update the locations of the samples (regions).

Figure 10 shows the evolution of the tracking sequence,
from starting frame to frame 30 where the target left the
field view of the camera. The frames shown are 1, 7, 10, 14,
17, 20, 23, 26 and 29. It is easy to see that the movement
at some frames is large and that the target rotates and
changes its scale significantly. Even when this happens,
the proposed algorithm is able to track the target regions
all along the sequence.

A second sequence is presented using other omnidirec-
tional system, but it also has low frame rate. The system
has a parabolic mirror. Figure 11 shows the first image of
the sequence; the computed background, the selected fore-
ground region and corresponding ellipse. Finally, Figure
12 presents the evolution of the sequence.

CONCLUSIONS

This paper presents an alternative to tracking challenging
omnidirectional sequences. This alternative is an algorithm
able to track targets even when they rotate, change scale and
experiment significant changes in location and/or occlu-

sions. The algorithm models the target regions as ellipses;
these ellipses are described using the covariance matrix of
the target, as a result the ellipses can be rotated or scaled.
The proposed algorithm is especially useful in situations
where the frame rate is very low due to physical restrictions
on the system, bandwidth or another processing. The pro-
posed algorithm uses a modified version of the particle filter
where the dynamical model is replaced by a background
subtraction and data association.
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